×

ccd图像传感器工作原理

ccd图像传感器工作原理(CCD摄像器件的工作原理和结构)

admin admin 发表于2024-06-06 06:21:32 浏览10 评论0

抢沙发发表评论

本篇文章给大家谈谈ccd图像传感器工作原理,以及CCD摄像器件的工作原理和结构对应的知识点,文章可能有点长,但是希望大家可以阅读完,增长自己的知识,最重要的是希望对各位有所帮助,可以解决了您的问题,不要忘了收藏本站喔。

本文目录

CCD摄像器件的工作原理和结构

CCD摄像器件使用的是CCD传感器。结构:一个CCD图像传感器是一个由光电二极管和存储区构成的矩阵,每个成像像元由一个光电二极管和其控制的一个邻近电荷存储区组成。 原理:光电二极管将光线(光子)转换为电荷(电子),光电二极管收集到的电子总数量与光线的强度成正比。在读取这些电荷时,各列数据被移动到垂直电荷传输方向的电荷传递寄存器中。然后各列电荷传递寄存器中的电荷按行被移动到总的行电荷传递寄存器中,总的行电荷传递寄存器中每行的电荷信息被连续读出,再通过电荷/电压转换器和放大器来得到图像的信息。这种结构能够产生低噪点、高性能的图象。 一般来说,逐行扫描面阵CCD的电荷转移有以下三种形式:行间转移、帧转移、全帧转移等方式。这三种方式的工作原理又各有不同: 1、行间转移(Interline Transfer) 它的像敏单元呈二维排列,感光单元和存储单元在CCD表面上相邻排列,每列像敏单元被遮光的存储单元即垂直移位寄存器用沟道阻隔开,像敏单元与垂直移位寄存器之间又有转移控制栅。每一像敏单元对应于一个遮光的垂直移位寄存器单元。垂直移位寄存器的另一侧与另一列像敏单元也被沟道阻隔开。像敏单元的光生电荷被很快的水平转移到相邻的垂直移位寄存器,然后被垂直转移到输出寄存器中,外部电路从输出寄存器中读出电荷并转化成电压信号。2、帧转移(Frame Transfer)CCD 帧转移面阵CCD由成像区、暂存区和水平读出寄存器三部分构成。图像首先经物镜成像到光敏区。当光敏区的某一相电极加有适当的偏压时,光生电荷将被收集到这些电极下方的势阱里,这样就将被摄光学图像转移为光积分电极下的电荷包图像。当光积分周期结束时,通过加到成像区和存储区电极上的驱动脉冲,将代表整个一帧图像的电荷全部转移到存储区中各自对应的存储单元内,称为帧转移。完成帧转移后,在读出时钟脉冲和存储时钟脉冲的作用下,存储区内的电荷以平移的方式向下移动,逐行进入读出寄存器。然后在读出寄存器中沿水平方向移动,最后经输出电路输出。当第一场读出的同时,第二场信息通过光积分又收集到势阱中。一旦第一场信息被全部读出,第二场信息随之传送给寄存器,使之连续地读出。帧转移面阵CCD的结构如图所示。3、全帧转移(Full FrameTransfer)CCD 全帧转移型的CCD光敏区占据了全部CCD芯片的绝大部分,主要用于高分辨率的应用中。这种类型的CCD传感器没有存储单元,感光单元光电转换产生电荷后,通过一个外部的快门关闭,使感光单元不再感光,电荷信息被逐行转移至水平移位寄存器,之后电荷再被转移到输出结构中,继而被转换成电压信号输出。 另外我记得我还看到过一篇科天健发表的新闻“CCD与CMOS哪种更适合工业相机市场?”里面对CCD的技术性能分析非常不错,有兴趣可以搜一搜他们进他们网站看看。以上回答希望能帮助到你。

求CCD成像传感器的工作原理

CMOS/CCD图像传感器工作原理 无论是CCD还是CMOS,它们都采用感光元件作为影像捕获的基本手段,CCD/CMOS感光元件的核心都是一个感光二极管(photodiode),该二极管在接受光线照射之后能够产生输出电流,而电流的强度则与光照的强度对应。但在周边组成上,CCD的感光元件与CMOS的感光元件并不相同,前者的感光元件除了感光二极管之外,包括一个用于控制相邻电荷的存储单元,感光二极管占据了绝大多数面积—换一种说法就是,CCD感光元件中的有效感光面积较大,在同等条件下可接收到较强的光信号,对应的输出电信号也更明晰。而CMOS感光元件的构成就比较复杂,除处于核心地位的感光二极管之外,它还包括放大器与模数转换电路,每个像点的构成为一个感光二极管和三颗晶体管,而感光二极管占据的面积只是整个元件的一小部分,造成CMOS传感器的开口率远低于CCD (开口率:有效感光区域与整个感光元件的面积比值);这样在接受同等光照及元件大小相同的情况下,CMOS感光元件所能捕捉到的光信号就明显小于CCD元件,灵敏度较低;体现在输出结果上,就是CMOS传感器捕捉到的图像内容不如CCD传感器来得丰富,图像细节丢失情况严重且噪声明显,这也是早期CMOS 传感器只能用于低端场合的一大原因。 CMOS开口率低造成的另一个麻烦在于,它的像素点密度无法做到媲美CCD的地步,因为随着密度的提高,感光元件的比重面积将因此缩小,而CMOS开口率太低,有效感光区域小得可怜,图像细节丢失情况会愈为严重。因此在传感器尺寸相同的前提下,CCD的像素规模总是高于同时期的CMOS传感器,这也是CMOS长期以来都未能进入主流数码相机市场的重要原因之一。 每个感光元件对应图像传感器中的一个像点,由于感光元件只能感应光的强度,无法捕获色彩信息,因此必须在感光元件上方覆盖彩色滤光片。在这方面,不同的传感器厂商有不同的解决方案,最常用的做法是覆盖RGB红绿蓝三色滤光片,以1:2:1的构成由四个像点构成一个彩色像素(即红蓝滤光片分别覆盖一个像点,剩下的两个像点都覆盖绿色滤光片),采取这种比例的原因是人眼对绿色较为敏感。而索尼的四色CCD技术则将其中的一个绿色滤光片换为翡翠绿色(英文 Emerald,有些媒体称为E通道),由此组成新的R、G、B、E四色方案。不管是哪一种技术方案,都要四个像点才能够构成一个彩色像素,这一点大家务必要预先明确。 在接受光照之后,感光元件产生对应的电流,电流大小与光强对应,因此感光元件直接输出的电信号是模拟的。在CCD传感器中,每一个感光元件都不对此作进一步的处理,而是将它直接输出到下一个感光元件的存储单元,结合该元件生成的模拟信号后再输出给第三个感光元件,依次类推,直到结合最后一个感光元件的信号才能形成统一的输出。由于感光元件生成的电信号实在太微弱了,无法直接进行模数转换工作,因此这些输出数据必须做统一的放大处理—这项任务是由CCD传感器中的放大器专门负责,经放大器处理之后,每个像点的电信号强度都获得同样幅度的增大;但由于CCD本身无法将模拟信号直接转换为数字信号,因此还需要一个专门的模数转换芯片进行处理,最终以二进制数字图像矩阵的形式输出给专门的DSP处理芯片。 而对于CMOS传感器,上述工作流程就完全不适用了。 CMOS传感器中每一个感光元件都直接整合了放大器和模数转换逻辑,当感光二极管接受光照、产生模拟的电信号之后,电信号首先被该感光元件中的放大器放大,然后直接转换成对应的数字信号。换句话说,在CMOS传感器中,每一个感光元件都可产生最终的数字输出,所得数字信号合并之后被直接送交DSP芯片处理—问题恰恰是发生在这里,CMOS感光元件中的放大器属于模拟器件,无法保证每个像点的放大率都保持严格一致,致使放大后的图像数据无法代表拍摄物体的原貌—体现在最终的输出结果上,就是图像中出现大量的噪声,品质明显低于CCD传感器。

CCD成像原理的原理

●用相机拍摄景物时,景物反射的光线通过相机的镜头透射到CCD上。●当CCD曝光后,光电二极管受到光线的激发释放出电荷,感光元件的电信号便由此产生。●CCD控制芯片利用感光元件中的控制信号线路对光电二极管产生的电流进行控制,由电流传输电路输出,CCD会将一次成像产生的电信号收集起来,统一输出到放大器。●经过放大和滤波后的电信号被送到A/D,由A/D将电信号(此时为模拟信号)转换为数字信号,数值的大小和电信号的强度即电压的高低成正比。这些数值其实就是图像的数据了。●不过单依靠第4步所得到的图像数据还不能直接生成图像,还要输出到数字信号处理器(DSP)。在DSP中,这些图像数据被进行色彩校正、白平衡处理(视用户在相机中的设定而定)等后期处理,编码为相机所支持的图像格式、分辨率等数据格式,然后才会被存储为图像文件。●最后,图像文件就被写入到存储器上(内置或外置存储器)。

CCD和CMOS原理有什么区别

(什么是传感器简称CCD)传感器简称CCDCCD的尺寸,其实是说感光器件的面积大小,这里就包括了CCD和CMOS。感光器件的面积大小,CCD/CMOS面积越大,捕获的光子越多,感光性能越好,信噪比越低。CCD/CMOS是数码相机用来感光成像的部件,相当于光学传统相机中的胶卷。CCD上感光组件的表面具有储存电荷的能力,并以矩阵的方式排列

CCD工业相机的原理是什么

CCD相机采用电荷耦合器件作为其感光元器件。其原理是:芯片上面整齐地排列着很多小的感光单元,光线中的光子撞击每个单元后,在这些单元中会产生电子(光电效应),光子的数目与电子的数目互成比例。 图像经透镜成像于电容数组表面后,依其亮度的强弱在每个电容单位上形成强弱不等的电荷。CMOS与CCD主要有以下不同:(1)成像过程中产生的噪声高;(2)集成性高;(3)读出速度快,地址选通开关可随机采样,获得更高的速度;(4)噪声:由于CMOS图像传感器集成度高,各元件、电路之间距离很近,干扰比较严重,噪声对图像质量影响很大。随着CMOS电路消噪技术的不断发展,为生产高密度优质的CMOS图像传感器提供了良好的条件。择一款工业相机你可以选择Regem Marr 研祥金码,其内置丰富的IO接口,支持复杂现场需求。想要选有什么不清楚的您随时随地拨打4000-697-797服务热线,均可获得产品介绍、购买咨询、售后处理等人工服务,您反馈的任何问题,都将得到专业贴心的解答。

CCD传感器的原理

CCD传感器是一种新型光电转换器件,它能存储由光产生的信号电荷。当对它施加特定时序的脉冲时,其存储的信号电荷便可在CCD内作定向传输而实现自扫描。它主要由光敏单元、输入结构和输出结构等组成。它具有光电转换、信息存贮和延时等功能,而且集成度高、功耗小,已经在摄像、信号处理和存贮3大领域中得到广泛的应用,尤其是在图像传感器应用方面取得令人瞩目的发展。CCD有面阵和线阵之分,面阵是把CCD像素排成1个平面的器件;而线阵是把CCD像素排成1直线的器件。由于在军事领域主要用的是面阵CCD,因此这里主要介绍面阵CCD。

CCD摄像头的工作原理和结构

CCD的工作原理

CCD是由在硅片上整齐排列的光敏二极管单元组成的,它们整齐地排成一矩形方阵(图6-1),其中每一个光敏单元称为像元,当光照射到硅片上的方阵时, 每一个像元中的原子在具有一定能量的光子作用下,电子从原子中逃逸,形成了一对自由电子和失去电子的原子空穴。投射到光敏单元上的光线越强,产生的电子—空穴越多。

在硅片上这些电子可以和空穴分离,并可以收集起来,电子—空穴对的分离和收集用半导体中的势阱就可以完成,就象用水桶收集雨水一样。图6-2中排列的水桶相当于排列的光敏单元(像元),它们象收集雨水似的收集由光子作用产生的电子。电子数主要取决于光照强度和收集(积分)时间的长短,收集完成后,最右边的桶将桶中的电荷倒入一设在输出端的电子测量单元,电荷/电压转换单元将电子转换成相应的电压,形成了一个像元的视频信号。最右边桶中的电子倒空后,又可以接收从旁边桶中倒入的电子,这样相邻桶之间不断向输出端倒换(移位)桶中的电荷,直至倒换(移位)到输出端的电子测量单元,转换成像元电压。

CCD的突出特点是以电荷作为信号的载体,不同于大多数以电流、电压为信号载体的器件。所以如何将成千上万个像元中的光感应所获得的电荷取出来是CCD图像传感器的关键。构成CCD的基本单元是MOS(金属—氧化物—半导体)结构,在半导体和金属栅电极之间加上足够的电压时,例如加上电压(10V)后,形成了一个能存储电荷的势阱,图6-3 (a),当光线射在这个二极管上时,能在势阱中产生与光能量成正比的电荷;同时,这个势阱还有累积功能,当光线在一时间段内照射时,它能将这一时间段内,由光线强弱产生的电荷累积起来。当多个栅极紧紧排列在一起(间隙宽度小于3μm),并在它们上面加上按一定规律变化的电压时,存储在势阱中的电荷就可以移动起来。

当电极②从2V变为10V时,电极①势阱中的电荷流向第②个电极,并和第一个电极平均分配,图6-3(b)和(c),也称电荷耦合,第①个电极由10V降为2V时,电极①中的电荷全部倒入电极②下的势阱,这样电极①中代表像元光照强度的电荷移位到电极②下的势阱了。这种电荷从一个电极(电荷寄存器)到另一个电极的移位就是CCD的基本动作,使用这种移位将阵列中的每一个像元电荷逐行、逐列地转移至输出端的电荷/电压转换单元,形成了以电压表示像元光照强度的视频信号。这也是为什么将CCD称为电荷耦合器件的原因。

CCD的结构

CCD的结构主要由下列功能块构成:

a.光敏区(成像区)由MOS光积分电容或PN结构光电二极管阵列构成,将投影进来的光图像转换成电荷图像阵列,而且阵列中的每一个像元势阱,能像水桶似的在固定时间间隔内累加电荷。

b.电荷移位寄存器阵列:存储和移位像元电荷的寄存器阵列,光敏区光转换并累集完电荷后,将整个阵列的像元电荷转移到电荷移位寄存器的对应阵列中,然后按照电视扫描的规律,逐行、逐列地将电荷移位输出。

c.转移栅:光敏区和电荷移位寄存器由转移栅相连。通过转移栅上的控制电压的高低将光敏阵列与电荷移位寄存器阵列连接起来。当光敏区光注入,并不断积累电荷时(又称光积分),转移栅上加低电压将它们隔离起来,反之当光敏区光积累完成后,转移栅加高电压,光敏区所积累的信号电荷通过转移栅转移到电荷移位寄存器阵列,这种转移是极快的,只需一个极短的正脉冲就可完成转移动作。所以光敏区和电荷移位寄存区的连通时间很短,绝大部分时间是隔离的,在隔离期间它们分别作光电转换和移位输出的动作。

d.电荷/电压转换器和电压放大器:将移位寄存器输出的电荷转换成电压,并将其放大输出形成视频信号。

从上述CCD的结构可以看出,只要控制光敏区上的转移栅上的电压,就可以控制电荷累加的时间长短,这就是电子快门的基础。当电荷累集结束,并在转移栅上加一极短脉冲后,电荷就转移至电荷移位寄存器了,也就是CCD已获取了光图像。下面只是将电荷传送出去的扫描过程了。

CCD传感器的工作原理

  您好  电荷藕合器件图像传感器CCD(Charge Coupled Device),它使用一种高感光度的半导体材料制成,能把光线转变成电荷,通过模数转换器芯片转换成数字信号,数字信号经过压缩以后由相机内部的闪速存储器或内置硬盘卡保存,因而可以轻而易举地把数据传输给计算机,并借助于计算机的处理手段,根据需要和想像来修改图像。CCD由许多感光单位组成,通常以百万像素为单位。当CCD表面受到光线照射时,每个感光单位会将电荷反映在组件上,所有的感光单位所产生的信号加在一起,就构成了一幅完整的画面。  CCD  CCD和传统底片相比,CCD 更接近于人眼对视觉的工作方式。只不过,人眼的视网膜是由负责光强度感应的杆细胞和色彩感应的锥细胞,分工合作组成视觉感应。 CCD经过长达35年的发展,大致的形状和运作方式都已经定型。CCD 的组成主要是由一个类似马赛克的网格、聚光镜片以及垫于最底下的电子线路矩阵所组成。目前有能力生产 CCD 的公司分别为:SONY、Philips、Kodak、Matsushita、Fuji和Sharp,大半是日本厂商。  目前主要有两种类型的CCD光敏元件,分别是线性CCD和矩阵性CCD。线性CCD用于高分辨率的静态照相机,它每次只拍摄图象的一条线,这与平板扫描仪扫描照片的方法相同。这种CCD精度高,速度慢,无法用来拍摄移动的物体,也无法使用闪光灯。  矩阵式CCD,它的每一个光敏元件代表图象中的一个像素,当快门打开时,整个图象一次同时曝光。通常矩阵式CCD用来处理色彩的方法有两种。一种是将彩色滤镜嵌在CCD矩阵中,相近的像素使用不同颜色的滤镜。典型的有G-R-G-B和C-Y-G-M两种排列方式。这两种排列方式成像的原理都是一样的。在记录照片的过程中,相机内部的微处理器从每个像素获得信号,将相邻的四个点合成为一个像素点。该方法允许瞬间曝光,微处理器能运算地非常快。这就是大多数数码相机CCD的成像原理。因为不是同点合成,其中包含着数学计算,因此这种CCD最大的缺陷是所产生的图象总是无法达到如刀刻般的锐利。  CMOS  互补性氧化金属半导体CMOS(Complementary Metal-Oxide Semiconductor)和CCD一样同为在数码相机中可记录光线变化的半导体。CMOS的制造技术和一般计算机芯片没什么差别,主要是利用硅和锗这两种元素所做成的半导体,使其在CMOS上共存着带N(带–电) 和 P(带+电)级的半导体,这两个互补效应所产生的电流即可被处理芯片纪录和解读成影像。然而,CMOS的缺点就是太容易出现杂点, 这主要是因为早期的设计使CMOS在处理快速变化的影像时,由于电流变化过于频繁而会产生过热的现象。  除了CCD和CMOS之外,还有富士公司独家推出的SUPER CCD,SUPER CCD并没有采用常规正方形二极管,而是使用了一种八边形的二极管,像素是以蜂窝状形式排列,并且单位像素的面积要比传统的CCD大。将像素旋转45度排列的结果是可以缩小对图像拍摄无用的多余空间,光线集中的效率比较高,效率增加之后使感光性、信噪比和动态范围都有所提高。  传统CCD中的每个像素由一个二极管、控制信号路径和电量传输路径组成。SUPER CCD采用蜂窝状的八边二极管,原有的控制信号路径被取消了,只需要一个方向的电量传输路径即可,感光二极管就有更多的空间。SUPER CCD在排列结构上比普通CCD要紧密,此外像素的利用率较高,也就是说在同一尺寸下,SUPER CCD的感光二极管对光线的吸收程度也比较高,使感光度、信噪比和动态范围都有所提高。  那为什么SUPER CCD的输出像素会比有效像素高呢?我们知道CCD对绿色不很敏感,因此是以G-B-R-G来合成。各个合成的像素点实际上有一部分真实像素点是共用,因此图象质量与理想状态有一定差距,这就是为什么一些高端专业级数码相机使用3CCD分别感受RGB三色光的原因。而SUPER CCD通过改变像素之间的排列关系,做到了R、G、B像素相当,在合成像素时也是以三个为一组。因此传统CCD是四个合成一个像素点,其实只要三个就行了,浪费了一个,而SUPER CCD就发现了这一点,只用三个就能合成一个像素点。也就是说,CCD每4个点合成一个像素,每个点计算4次;SUPER CCD每3个点合成一个像素,每个点也是计算4次,因此SUPER CCD像素的利用率较传统CCD高,生成的像素就多了。

关于ccd图像传感器工作原理和CCD摄像器件的工作原理和结构的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。